Introduction: Numbers Ka Duniya
Namaste dosto! Aaj ham SSC CGL ke sabse important topic se start kar rahe hain – Classification of Numbers. Agar aap maths mein zero level se padhna chahte ho, toh ye post aapke liye bilkul perfect hai.
Kisi bhi government exam (SSC CGL, OSSC CGL, Bank, Railway, State Exams, etc.) mein Number System bahut hi important chapter hota hai. Aur Number System ka foundation hai Classification of Numbers.
Numbers Kya Hote Hain?
Numbers wo mathematical values hote hain jinhe hum counting (ginnati) aur measuring (maapna) ke liye use karte hain. Jaise: 1, 2, 3, -5, 0.5, √2, Ï€, etc.
Itne saare numbers ko samajhne ke liye unko groups mein baanta jaata hai. Is process ko hi hum bolte hain Classification of Numbers.
1. NATURAL NUMBERS (N)
Definition
Natural Numbers wo positive integers hote hain jo 1 se start hote hain aur infinity tak jaate hain. Inhe hum generally counting numbers bhi kehte hain.
Important Characteristics
- Sabse chhota natural number = 1
- Koi bhi sabse bada natural number nahi hota (set infinite hai)
- Natural numbers hamesha positive hote hain
- 0 natural number nahi hai
- Negative numbers natural numbers me include nahi hote
Examples
✗ 0, -5, -10, 3.5 (natural numbers nahi hain)
Real Life Examples
- Aapke paas kitni kitaabe hain? – 5 books (Natural number)
- Class mein kitne students hain? – 60 students (Natural number)
- Cricket team me players – 11 players (Natural number)
2. WHOLE NUMBERS (W)
Definition
Whole Numbers basically Natural Numbers hote hain, lekin inme 0 bhi include hota hai.
Key Points
- Natural Numbers + 0 = Whole Numbers
- Sabse chhota whole number = 0
- Whole numbers bhi hamesha non-negative hote hain
- Negative numbers whole numbers nahi hote
Natural vs Whole Numbers
| Feature | Natural Numbers | Whole Numbers |
|---|---|---|
| Starting Point | 1 | 0 |
| Contains Zero | ✗ Nahi | ✓ Haan |
| Examples | 1, 2, 3, 4... | 0, 1, 2, 3... |
| Smallest Number | 1 | 0 |
Real Life Examples
- Pocket me paise: 0 rupee (whole number)
- Empty box me chocolates: 0 chocolate
3. INTEGERS (Z)
Definition
Integers wo numbers hote hain jisme negative numbers, zero aur positive numbers sab aate hain.
Key Points
- Integers = Negative Numbers + Zero + Positive Numbers
- Integers ke fractional/decimal part nahi hote
- Symbol: Z (German word “Zahlen” se)
Types of Integers
- Positive Integers: 1, 2, 3, 4, 5... (Natural numbers)
- Negative Integers: -1, -2, -3, -4, -5...
- Zero: 0 (na positive, na negative)
Whole vs Integers
| Feature | Whole Numbers | Integers |
|---|---|---|
| Negative Numbers | ✗ Nahi | ✓ Haan |
| Zero | ✓ Haan | ✓ Haan |
| Positive Numbers | ✓ Haan | ✓ Haan |
| Examples | 0, 1, 2, 3... | ..., -2, -1, 0, 1, 2... |
Real Life Examples
- Bank balance: +5000 rupee (positive integer)
- Temperature: -5°C (negative integer)
- Building ka ground floor: 0
4. EVEN NUMBERS
Definition
Even Numbers wo numbers hote hain jo 2 se completely divide hote hain, yani remainder 0 aata hai.
General Form: 2n (jahan n koi bhi integer hai)
Characteristics
- Last digit hamesha 0, 2, 4, 6, ya 8 hota hai
- 2 se divide karne par remainder = 0
- Negative even numbers bhi hote hain: -2, -4, -6...
Quick Check
357 → last digit 7 → Even nahi (Odd)
5. ODD NUMBERS
Definition
Odd Numbers wo numbers hote hain jo 2 se divide nahi hote, yani remainder 1 aata hai.
General Form: 2n + 1
Characteristics
- Last digit hamesha 1, 3, 5, 7, ya 9
- 2 se divide karne par remainder = 1
- Negative odd numbers bhi hote hain: -1, -3, -5...
Even vs Odd
| Property | Even | Odd |
|---|---|---|
| Divisible by 2 | ✓ Yes | ✗ No |
| Last Digit | 0, 2, 4, 6, 8 | 1, 3, 5, 7, 9 |
| General Form | 2n | 2n + 1 |
| Remainder on ÷ 2 | 0 | 1 |
6. PRIME NUMBERS
Definition
Prime Numbers wo natural numbers hote hain jinke sirf 2 factors hote hain:
- 1
- Wo number khud
Important Points
- 1 prime nahi hai (sirf 1 factor)
- 2 sabse chhota aur eklauta even prime number hai
- Prime numbers infinite hote hain
Prime Numbers (100 tak)
31, 37, 41, 43, 47,
53, 59, 61, 67, 71,
73, 79, 83, 89, 97
Prime Check – Example
Q: Kya 29 prime hai?
- √29 ≈ 5.4
- 5 se chhote primes: 2, 3, 5
- 29 ÷ 2, 3, 5 – kisi se bhi completely divide nahi hota
Isliye 29 prime number hai.
7. COMPOSITE NUMBERS
Definition
Composite Numbers wo natural numbers hote hain jinke 2 se zyada factors hote hain.
Key Points
- 1 composite nahi hai
- Sabse chhota composite number = 4
- Composite numbers ke kam se kam 3 factors hote hain
Prime vs Composite
| Property | Prime | Composite |
|---|---|---|
| Number of Factors | Exactly 2 | More than 2 |
| Smallest Number | 2 | 4 |
| Examples | 2, 3, 5, 7, 11... | 4, 6, 8, 9, 10... |
8. RATIONAL NUMBERS (Q)
Definition
Rational Numbers wo hote hain jo p/q form me likhe ja sakte hain, jahan:
- p = koi bhi integer
- q = koi bhi integer (q ≠ 0)
Examples
✗ √2, Ï€, √3 (irrational)
Decimal Form
- Terminating: 1/2 = 0.5, 1/4 = 0.25
- Repeating: 1/3 = 0.333..., 2/3 = 0.666...
9. IRRATIONAL NUMBERS
Definition
Irrational Numbers wo numbers hote hain jo p/q form me likhe hi nahi ja sakte, jahan p aur q integers hon.
Key Points
- Decimal expansion non-terminating aur non-repeating hoti hai
- Fraction form (integer p/q) me exact convert nahi ho sakte
Examples
✗ 1/2, 0.5, 0.333... (rational)
10. REAL NUMBERS (R)
Definition
Real Numbers me saare rational + irrational numbers include hote hain.
Examples
✗ 2i, 3 + 4i (complex, real nahi)
Number Tree (Text Form)
/ \
/ \
RATIONAL (Q) IRRATIONAL
/ | \
INTEGER FRACTION DECIMAL
/ | \
W 0 Negative
|
NATURAL
Summary Table – Sab Ek Jagah
| Type | Definition | Examples | Important Point |
|---|---|---|---|
| Natural (N) | 1 se start hone wale positive integers | 1, 2, 3, 4... | 0 include nahi hota |
| Whole (W) | Natural + 0 | 0, 1, 2, 3... | Smallest whole = 0 |
| Integer (Z) | Negative + 0 + Positive | ..., -2, -1, 0, 1, 2... | No fractions/decimals |
| Even | 2 se divisible | 0, 2, 4, 6... | Last digit 0,2,4,6,8 |
| Odd | 2 se divisible nahi | 1, 3, 5, 7... | Last digit 1,3,5,7,9 |
| Prime | Exactly 2 factors | 2, 3, 5, 7... | 1 prime nahi, 2 only even prime |
| Composite | 2 se zyada factors | 4, 6, 8, 9... | Smallest composite = 4 |
| Rational (Q) | p/q form, q ≠ 0 | 1/2, -3/4, 5 | Decimal terminating/repeating |
| Irrational | p/q form possible nahi | Ï€, √2, √3 | Decimal non-terminating & non-repeating |
| Real (R) | Rational + Irrational | Sab above wale | Complex exclude |
FAQs – Students Ke Common Doubts
Q. Kya 0 natural number hai?
Nahi, 0 natural number nahi hai. Natural numbers 1 se start hote hain. Lekin 0 whole number hai.
Q. Kya 1 prime number hai?
Nahi, 1 prime nahi hai kyunki prime ke 2 factors hone chahiye. 1 ka sirf ek factor hai – 1 khud.
Q. Sabse chhota prime number kaun sa hai?
2 sabse chhota prime number hai, aur ye hi eklauta even prime number hai.
Q. Kya har integer rational number hota hai?
Haan, kyunki har integer n ko n/1 form me likh sakte hain.
Q. Negative numbers prime ho sakte hain?
Nahi, prime numbers definition natural numbers par based hai, jo positive hote hain.
Practice Questions – Khud Try Karo
- 97 prime hai ya composite?
- -5 kaun sa type ka number hai? (integer / rational / real?)
- 0.333... (repeating) rational hai ya irrational?
- √4 aur √5 me se kaun irrational hai?
- Sabse chhota composite number kaun sa hai?
