HCF and LCM for SSC CGL - Complete Guide | Highest Common Factor & Least Common Multiple in in Hinglish (Hindi +English)

📌 Series Info: Ye post Chapter 1: Number System ka part hai.
Post Number: 4/76 | Topic: 1.4 HCF & LCM
Previous: 1.1 Classification ✅ | 1.2 Divisibility ✅ | 1.3 Prime Factorization ✅

Introduction: HCF Aur LCM Kya Hain?

Namaste dosto! Aaj ham HCF (Highest Common Factor) aur LCM (Least Common Multiple) padhenge. Ye SSC CGL ka sabse important aur high-weightage topic hai.

HCF Kya Hai?

🔹 HCF = Highest Common Factor (सबसे बड़ा उभयनिष्ठ गुणनखंड)
Other names: GCD (Greatest Common Divisor), GCF (Greatest Common Factor)

Simple words me: Do ya zyada numbers ka sabse bada common factor (divisor) jo un sabko divide kar sake.

Example: 12 aur 18 ka HCF nikalo
Factors of 12: 1, 2, 3, 4, 6, 12
Factors of 18: 1, 2, 3, 6, 9, 18
Common factors: 1, 2, 3, 6
Highest common factor: 6 ✓

LCM Kya Hai?

🔹 LCM = Least Common Multiple (न्यूनतम समापवर्त्य)
Sabse chhota common multiple

Simple words me: Do ya zyada numbers ka sabse chhota common multiple jo un sabse divisible ho.

Example: 4 aur 6 ka LCM nikalo
Multiples of 4: 4, 8, 12, 16, 20, 24...
Multiples of 6: 6, 12, 18, 24, 30...
Common multiples: 12, 24, 36...
Least common multiple: 12 ✓
🎯 Exam Importance: SSC CGL me 2-3 direct questions aate hain. Plus Time & Work, Speed & Distance, aur bahut saare topics me indirectly use hota hai.

HCF Nikalne Ke Methods

HCF nikalne ke mainly 3 methods hain:

  1. Prime Factorization Method
  2. Division Method (Euclid's Algorithm) – Fastest ⚡
  3. Factor Listing Method – Basic

Method 1: Prime Factorization Method (HCF)

Steps:

  1. Dono numbers ka prime factorization karo
  2. Common prime factors nikalo
  3. Har common factor ki minimum power lo
  4. Un sabko multiply karo
Example 1: 24 aur 36 ka HCF nikalo

Step 1: Prime factorization
24 = 2³ × 3¹
36 = 2² × 3²

Step 2: Common factors identify karo
Common: 2 aur 3 ✓

Step 3: Minimum powers lo
2 ki power: min(3,2) = 2 → 2²
3 ki power: min(1,2) = 1 → 3¹

Step 4: Multiply karo
HCF = 2² × 3¹ = 4 × 3 = 12 ✓
Example 2: 60, 90 aur 120 ka HCF nikalo

Prime factorization:
60 = 2² × 3 × 5
90 = 2 × 3² × 5
120 = 2³ × 3 × 5

Common factors: 2, 3, 5
Minimum powers:
2: min(2,1,3) = 1 → 2¹
3: min(1,2,1) = 1 → 3¹
5: min(1,1,1) = 1 → 5¹

HCF = 2 × 3 × 5 = 30 ✓

Method 2: Division Method (Euclid's Algorithm) FASTEST

Steps (2 Numbers Ke Liye):

  1. Bade number ko chhote number se divide karo
  2. Remainder nikalo
  3. Ab divisor ko dividend banao aur remainder ko divisor banao
  4. Jab remainder 0 ho jaye, us waqt ka divisor hi HCF hai
Example 1: 48 aur 18 ka HCF nikalo

Step 1: 48 ÷ 18 = Quotient 2, Remainder 12
Step 2: 18 ÷ 12 = Quotient 1, Remainder 6
Step 3: 12 ÷ 6 = Quotient 2, Remainder 0 ✓

Remainder 0 ho gaya, toh HCF = 6 ✓
Example 2: 1024 aur 256 ka HCF (bade numbers)

Step 1: 1024 ÷ 256 = Q=4, R=0 ✓

Pehle hi remainder 0, toh HCF = 256 ✓
Note: Jab ek number dusre se completely divide ho jaye, toh chhota number hi HCF hota hai.
💡 Pro Tip: Division method sabse fast hai especially jab:
  • Numbers bade hon (3-4 digits)
  • Prime factorization difficult ho
  • Exam me time bachana ho

3 Ya Zyada Numbers Ka HCF:

Example: 12, 18, 24 ka HCF nikalo

Method: Pehle do ka nikalo, phir result ko teesre ke saath divide karo

Step 1: HCF(12, 18)
18 ÷ 12 = R = 6
12 ÷ 6 = R = 0
HCF = 6

Step 2: HCF(6, 24)
24 ÷ 6 = R = 0
HCF = 6

Final HCF = 6 ✓

LCM Nikalne Ke Methods

LCM nikalne ke mainly 3 methods hain:

  1. Prime Factorization Method
  2. Common Division Method – Most Popular ⚡
  3. Formula Method (using HCF)

Method 1: Prime Factorization Method (LCM)

Steps:

  1. Sabhi numbers ka prime factorization karo
  2. Sabhi prime factors (common + uncommon) lo
  3. Har factor ki maximum power lo
  4. Sabko multiply karo
Example 1: 12 aur 18 ka LCM nikalo

Prime factorization:
12 = 2² × 3¹
18 = 2¹ × 3²

All prime factors: 2 aur 3
Maximum powers:
2: max(2,1) = 2 → 2²
3: max(1,2) = 2 → 3²

LCM = 2² × 3² = 4 × 9 = 36 ✓
Example 2: 15, 20, 25 ka LCM nikalo

Prime factorization:
15 = 3 × 5
20 = 2² × 5
25 = 5²

All factors: 2, 3, 5
Maximum powers:
2: max(0,2,0) = 2 → 2²
3: max(1,0,0) = 1 → 3¹
5: max(1,1,2) = 2 → 5²

LCM = 2² × 3 × 5² = 4 × 3 × 25 = 300 ✓

Method 2: Common Division Method MOST POPULAR

Steps:

  1. Sabhi numbers ko ek line me likho
  2. Sabse chhote prime number se divide karo (jitne divide ho sakein)
  3. Jo divide na hon unhe waise hi niche likho
  4. Jab tak sab numbers 1 na ho jayein, repeat karo
  5. Left side ke sabhi divisors ko multiply karo
Example 1: 12, 18, 24 ka LCM

2 | 12, 18, 24
2 | 6, 9, 12
2 | 3, 9, 6
3 | 3, 9, 3
3 | 1, 3, 1
| 1, 1, 1

LCM = 2 × 2 × 2 × 3 × 3 = 2³ × 3² = 72 ✓
Example 2: 8, 12, 16 ka LCM

2 | 8, 12, 16
2 | 4, 6, 8
2 | 2, 3, 4
2 | 1, 3, 2
3 | 1, 3, 1
| 1, 1, 1

LCM = 2 × 2 × 2 × 2 × 3 = 2⁴ × 3 = 48 ✓
💡 Exam Tip: Common division method sabse fast aur error-free hai. Multiple numbers ka LCM ek saath nikal sakte ho!

HCF & LCM Ka Golden Formula MUST KNOW

⭐ HCF × LCM = First Number × Second Number ⭐

Ye formula sirf 2 numbers ke liye work karta hai!

Example: 12 aur 18 ka HCF = 6, LCM = 36
Verify: HCF × LCM = 6 × 36 = 216
12 × 18 = 216 ✓
Match ho gaya! Formula correct ✓

Formula Ka Use:

Question: Do numbers ka HCF 12 hai aur unka product 1728 hai. LCM kya hoga?

Solution:
HCF × LCM = Product of numbers
12 × LCM = 1728
LCM = 1728 ÷ 12
LCM = 144 ✓

HCF vs LCM – Key Differences

Feature HCF LCM
Full Form Highest Common Factor Least Common Multiple
Meaning Sabse bada common divisor Sabse chhota common multiple
Value Hamesha numbers se chhota ya equal Hamesha numbers se bada ya equal
Prime Method Common factors ki minimum powers All factors ki maximum powers
Example HCF(12,18) = 6 LCM(12,18) = 36
Use Case Division problems, grouping Timing problems, repetition

Special Cases & Shortcuts

Case 1: Co-Prime Numbers (Sahaapeksh Sankhya)

Agar do numbers ka HCF = 1, toh wo co-prime kehlate hain.
Co-prime numbers ka LCM = unka product
Example: 7 aur 11 (dono prime hain)
HCF(7,11) = 1 (co-prime) ✓
LCM(7,11) = 7 × 11 = 77 ✓

Case 2: One Number Divides Another

Agar ek number dusre number ko completely divide karta hai:
HCF = Chhota number
LCM = Bada number
Example: 12 aur 36
36 ÷ 12 = 3 (completely divisible)
HCF(12,36) = 12 ✓
LCM(12,36) = 36 ✓

Case 3: Prime Numbers

Do prime numbers ka:
HCF = 1 (always)
LCM = unka product

Case 4: Consecutive Numbers

Do consecutive numbers (like 5,6 or 11,12) ka:
HCF = 1 (always)
LCM = unka product
Example: 15 aur 16
HCF = 1 ✓
LCM = 15 × 16 = 240 ✓

Real Life Applications (Word Problems)

HCF Type Questions:

Q1. Ek rectangle ki length 12 cm aur breadth 18 cm hai. Isse sabse badi square tiles se cover karna hai (without cutting). Har tile ki side